
Self Driving Cloud

care0hlyn.github.com 

IAM Role Recommender

Carolyn Huynh | Google Cloud Security



Role

I was the first designer to join this team and ever since, 
I’ve been the Lead UX Designer and thought leader 
behind the suite of self driving cloud/policy intelligence 
tools for three years now. 

I’ve lead every product within SDC/PI from inception to 
launch cycles. Since I was the first to join the team, I’ve 
been the go-to designer for all x-functional teams within 
the Self Driving Cloud ecosystem.

I’ve also been responsible for leading the initial vision 
work concepts as well.

Lead UX Designer 

Carolyn Huynh | Google Cloud Security



What are we building?

IAM Role Recommender is the first product launch within 
the Self Driving Cloud suite of products. Role 
Recommender is built on top of IAM (Identity & Access 
Management) policy.

At the time, no other competitors (AWS, Azure) had this 
tooling available and we were moving at lightning speed 
to ship this product out tomorrow.

Applying Machine 
Learning Intelligence 
and Analytics to 
security products 

Carolyn Huynh | Google Cloud Security



Who are we building it for?

Security teams for our existing enterprise customers that 
are on Google Cloud Platform. Companies such as 
Spotify, Target and Snapchat were some of the big names 
we worked with on this feature.

Also for security consultants (PWC etc) and 3rd party 
products that might want to take advantage of this 
functionality.

Carolyn Huynh | Google Cloud Security



”
I need help adhering to the 
principle of least privilege.
Nicole
Security Engineer at {Tech Company}

Carolyn Huynh | Google Cloud Security



The Problem Statement: 

Least Privilege is hard to measure.
It’s also hard to get right.



Understanding 
least privilege

There is no easy way to 
understand how well 
customers are doing in 
maintaining least 
privilege. 

Tracking least 
privilege

No easy way to track all 
the resources being 
created in an 
organization and who 
has access to them in 
the company.

Revealing when it’s 
over privileged

There is no easy way to 
see what permissions 
an individual is using

When to timebox 
access?

Most access tends to 
be indefinite 

Constraints stacked on constraints stacked on constraints
More constraints

Carolyn Huynh | Google Cloud Security



The Big UX ask:

How does one visualize surfacing 
machine learning recommendations 
while also building confidence in 
users so that they apply them?



Early Design Explorations

60+ iterations







Something was not right.

We weren’t visualizing 
machine learning intelligence 
in a more powerful way.

¿ML?



1

We needed more research

Back to the 

drawing board

3

...mixed with hands on brainstorming

Customer whiteboarding 
sessions

2

A lot of qualitative chats

Ran customer 

research sessions

4

A quick and dirty yes? no?

Designing on the spot in 
front of customers



The Light Bulb Moment

I was designing with roles. But 
customers wanted to go as granular 
as the permissions within the roles, 
which are hidden in the UI and only 
exposed via the API.



We talked to a lot of customers. A lot.

Based off foundational research, customer whiteboarding 
sessions, and several low-low fi concepts, my UX 
researcher and I were able to discern that in order for us 
to gain trust from our customers to apply Google 
recommendations, we needed to be as granular as 
possible.

After combing through all the qualitative data, I couldn’t 
get my mind off off of the granularity when it comes to 
displaying trust. 

Especially in the security space.

Users wanted to know exactly what we were removing, 
what we were adding and what was the machine learning 
recommended permission.

Research taught us 
that when it came to 
changing 
permissions, we had 
to be as explicit as 
possible 

Carolyn Huynh | Google Cloud Security



So, I decided to bring back the trusty code 
diff and give it a makeover to show exactly 
what we were removing (-), what we were 
adding (+) , and which part was machine 
learning (ML).



What a standard code diff looks like

the -/+ pattern is key here



Wait. We’re still missing the ML part.

Stay with me. The -/+ pattern is still key here.



...what if we added ML into 

the traditional -/+ pattern?











Meet the ML sparkles

Design Patent filed GP-300272-00-US-DP on 09/16/2019

For surfacing machine learning recommendation in a code diff.

No design challenge is too small or too big to take on.



Now, let’s walk through 
the whole product from 
start to finish.













Key Takeaways & Reflections 

As the first team to ship a ML 
product within self driving cloud...



Start with the 
user/customer first

A PM’s idea is good and all, but 
early collaboration from the 
beginning can not just shape the 
API but the UI as well.

The whiteboarding/brainstorming 
session with our customers in the 
iteration phase garnered some of 
the best data.

1

Anything can be 
patented.
Yes, even icons in a pattern.

3

UX the API.
...as much as possible.

Un-engineer the API as much as 
possible. UX the hell out of it.

Language in the API desperately 
needs a UX writer, and features that 
are API first without any UX 
consultation only creates more tech 
debt in the future.

2



The UI is so easy, my mom 
could use it!
Customer on GCP
Name and Company redacted

(I swear they said this).

”



Debuted as the keynote product at 
Google Cloud NEXT last year. 

Many of our top customers 
(Snapchat, Uber, Spotify, etc) use it 
frequently.



Thank You


