
Self Driving Cloud

care0hlyn.github.com 

Troubleshooter

Carolyn Huynh | Google Cloud Security



Role

I was the first designer to join the Self Driving Cloud team 
and ever since, I’ve been the Lead UX Designer and 
thought leader behind the suite of SDC products three 
years now. 

Troubleshooter is the second product within the 
self-driving cloud initiative that I have lead from inception 
to launch.

Lead UX Designer 

Carolyn Huynh | Google Cloud Security



The Problem: 

Troubleshooting 403 error 
messages is hard. 
It’s done through lots of trial & error.



What are we building?

Troubleshooter is the second product launch within the 
Self Driving Cloud suite of products. This product is meant 
to help over granting permissions by helping admins 
debug denial error messages.

Built on the IAM Recommender API, it was a sophisticated 
backend that needed to be unpacked simply in the UI.

Admins troubleshoot 
by giving more 
permissions, which 
makes it hard to 
maintain least 
privilege.

Carolyn Huynh | Google Cloud Security



Example User Scenario

Anita is a developer in your organization and gets an error 
message informing her that she does not have the 
relevant permissions when she tries to delete images in a 
bucket.

Anita goes to Mike, her security admin for help, who has 
to manually check the policy himself, and will end up 
expediting the process by just granting Anita a bunch of 
unnecessary roles.

Carolyn Huynh | Google Cloud Security



Translating the API to GUI

The engineers had approached me with a predetermined 
sketch in mind. 

After going through many rounds of the engineers’ design 
solution, I was convinced that their way was not the way 
to go. Through lots of research, I changed product 
direction by designing a different way to display IAM 
bindings by showing raw json policy so that advanced 
users would be able to click through bindings via a tree 
hierarchy. 

I was able to change product direction with multiple 
stakeholders with design thinking and creating a more 
visual tool for developers.

Carolyn Huynh | Google Cloud Security



...FYI, here was the engineer’s idea



...another example.



...annnd one more.



No matter how many versions of 
tables I designed, the problem was 
that developers still couldn’t 
understand and debug readable 
text.



...jk, last one.



Research

Research had shown that the original idea behind the 
engineer’s mocks for the product had one consistent 
theme:

Nobody could tell that each row in the table represented 
a binding within an IAM policy.

So, I literally went through the API and the subsequent 
raw json policy and began scrubbing it, in an attempt to 
find UI components that would expliciting show what 
each section of the policy meant.

Carolyn Huynh | Google Cloud Security



I decided to be as explicit as possible and 
expose raw json policy, just like how 
developers see it today.

I took a look at some of the most competitive 
products on the market and understood a 
rising trend in policy-as-code. 



I decided to mimic the policy-as-code trend 
as best as I could, while understanding the 
constraints of the API. 

We couldn’t provide a way to version control 
policy, but we could provide a way for 
customers to integrate with 3rd party tools 
that will allow them to.





A preview of the end solution I designed.



Research 2.0

My researcher ran with my idea of exposing raw json 
(something that hadn’t been done before within GCP), 
and we ran lots of customer sessions, often times 
changing up the design on the spot.

The PM of Troubleshooter was impressed by the amount 
of praise the new UI was getting from customers, and 
began to take the idea of exposing the raw policy and 
reusing the pattern in other areas of self driving cloud.

Carolyn Huynh | Google Cloud Security



Expert interface. Looks just 
like an API response.
Customer on GCP
Name and Company redacted

(I swear they said this).

”



Now, let’s walk through the whole 
product from start to finish.















Debuted on stage at Google Cloud 
NEXT.

One of the top most used products 
within GCP, making close to a 
[redacted #] API calls a month.



Key Takeaways & Reflections 

As the Lead Designer (and only 
designer) to ship a second self 
driving cloud product...



Accessibility

Since this is highly visual tool that 
really (and literally) highlights areas 
that helps developers debug 403 
messages, in a mad rush to ship, I 
had forgotten the most 
foundational part of shipping any 
visual tool: accessibility.

I hadn’t taken into account those 
were were colorblind.

1
Accessibility
I knew that icons were needed, 
along with a hidden tag within 
each icon that would describe 
what each denial message meant.

I deeply regretted this error, and as 
someone who prides myself n 
being an inclusive designer, I knew 
I had excluded a large portion of 
users..

3
Accessibility

I knew my mistake immediately after 
we shipped. 

Unlike role recommender which had 
the traditional +/- pattern, (which by 
the way, is the standard way for those 
who are colorblind to go through a 
code diff), Troubleshooter didn’t have 
that pattern.

2



Though I talk a lot about inclusivity in design, I 
hadn’t even held myself accountable, and had 
prioritized shipping > doing right by the user. 
It ended up creating tech debt to fix the 
problem.

I will do much, much better next time. 

As we all should. 



Thank You


